54 const double *i2hess_grad,
80 const double i2H[3] = {ppar.
i2Q[1], ppar.
i2Q[2], ppar.
i2P};
84 dx[j] = i2hess_grad[j] - i2hess[i] * dx[j];
85 dx[j+1] = i2hess_grad[j+1] - i2H[0] * dx[j+1];
86 dx[j+2] = i2hess_grad[j+2] - i2H[1] * dx[j+2];
87 dx[j+3] = i2hess_grad[j+3] - i2hess[i+1] * dx[j+3];
88 dx[j+4] = i2hess_grad[j+4] - i2H[0] * dx[j+4];
89 dx[j+5] = i2hess_grad[j+5] - i2H[1] * dx[j+5];
94 dx[i] = i2hess_grad[i] - i2H[2] * dx[i];
95 dx[i+1] = i2hess_grad[i+1] - i2H[2] * dx[i+1];
#define SMPC_NUM_STATE_VAR
Number of state variables.
A set of problem parameters.
double * w
Lagrange multipliers.
#define SMPC_NUM_VAR
Total number of variables.
void solve_backward(const int, double *)
Solve system ecL' * x = b using backward substitution.
matrix_ecL ecL
L for equality constraints.
matrix_E E
matrix of equality constraints
void form_Ex(const problem_parameters &, const double *, double *)
Forms E*x.
chol_solve(const int)
Constructor.
void form(const problem_parameters &, const double *)
Builds matrix L.
void form_ETx(const problem_parameters &, const double *, double *)
Forms E' * x.
void solve_forward(const int, double *)
Solve system ecL * x = b using forward substitution.
void solve(const problem_parameters &, const double *, const double *, const double *, double *)
Determines feasible descent direction.